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E F F E C T  O F  D I S P E R S I O N  F A C T O R S  O N  D E C A Y  
R E G I M E S  O F  S H O R T  W A V E S  I N  A G A S - S A T U R A T E D  

P O R O U S  M E D I U M  

A. M. Maksimov UDC 532.546:534.2 

A linear analysis of the evolution of small fast-oscillating perturbations in a porous medium saturated with 

a viscous gas is carried out within a wide range of acoustic Reynolds and Peclet numbers. 

The problem of propagation of elastic waves in rocks arises in connection with numerous geophysical 

applications such as search for and exploration of hydrocarbon deposits, determination of physico-mechanical 

properties of rocks, active seismoacoustic action with the goal of intensifying hydrocarbon extraction, etc. [1-3 ]. 

A theoretical analysis of the wave dynamics of gas-saturated rocks implies developing a mathematical model of a 

porous medium taking into account rheological and thermodynamic features of solid and fluid phases and 

mechanisms of their interaction. In the classical Frenkel-Biot-Nikolaevskii approach [4-7 ], rocks are treated as 

porous media within a continium approximation of the mechanics of heterogeneous media which makes it possible 
to develop efficiently models for investigation of the propagation mechanism of waves of various nature. In [8-10 ], 

an outgrowth of the approach has been proposed that takes into account additionally viscous stresses in the pore 

fluid and the liquid bound by the surface of the mineral skeleton. Taking into account dispersion factors (viscous 
stresses and thermal diffusivity) leads to emergence of dimensionless parameters and inverse acoustic Reynolds 

and Peclet numbers Rea I and Pea I at higher spatial terms in the equations of the model. At large Rea >> 1 and 

Pea >> 1, an asymptotic investigation of the model with the use of a multiscale decomposition method is possible. 
In this case, the Cauchy problem for the original system of equations of laws of mass, momentum, and energy 

conservation is transformed into the Cauchy problem for nonlinear evolution equations (of the Cortevega-de 

Vries-Burgers type). An analysis of solutions of evolution equations made it possible to distinguish oscillating 

regimes of wave propagation which emerge as a result of development of an instability. 

As is shown by estimates carried out at characteristic values of parameters of rocks and pore fluids, the 

range of variations in Rea and Pea appears to be rather wide: from Re a >> 1 and Pea >> 1 for a highly permeable 

porous medium saturated with a low-viscosity gas to Rea - 1 and Pe a - 10 t at a lowered permeability and increased 

viscosity. In this connection, it is of certain interest to carry out in the first approximation a linear analysis of 

propagation regimes of elastic waves in gas-saturated porous media in order to estimate their stability within a wide 

region of Rea and Pe a. In what follows, we carry out a comparative analysis of wavelength dependences of phase 

velocities and decay coefficients of longitudinal waves of the first and second kind and transverse waves, and an 

instability regime for longitudinal waves of the first kind is distinguished. The effect of the value of the pore pressure 

is analyzed. It is shown that a change in the pore pressure leads to appreciable differences in the values of velocity 

and decay coefficients up to emergence of the phenomenon of "opacity" of the medium for longitudinal waves of 
the second kind. 

Formulation of the Porous Medium Model. We consider a porous medium consisting of a thermoelastically 

deformable skeleton, a viscous liquid bound by the skeleton surface, and a viscous pore gas. The model of a porous 

medium proposed in what follows differs from the model [4-7 ] by taking into account viscous stresses in the free 

gase phase and bound liquid. In this case the tensor of stresses in the gas phase will be as follows (i, j = 1, 2, 3): 
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P i / =  - P~ii + vg [Ovgi/Ox j + OvgilOx i - ( 2 / 3 )  (Ovgk/Oxk) ~i#]"  (1)  

In  what  fo l lows,  we rest r ic t  ourselves to the case of a porous med ium saturated w i th  a perfect gas: 

pg = p l (RTg) ,  Eg = CgTg. (2) 

We will assume that the skeleton of the porous medium and the bound liquid form an effective viscoelastic 

solid phase that manifests the elastic properties of the skeleton and the viscous properties of the liquid. In this case 

both the skeleton and the bound liquid have identical velocity, temperature,  and pressure. With considerat ion for 

viscoelastic properties,  the theological relationship for the solid phase can be presented as follows (i, j ffi 1, 2, 3): 

tYij = reks + 2G (ei/ - eklJi /13 ) + f lsKl~ij  - lovKTsJq + 

-I- a m y  a [ O v s i /  Ox  j -i- O v s j /  Ox  i - -  ( 2 /3 )  ( Ovsk/ Oxk) t~ ij ] . ( 3 )  

The  equations of state and thermodynamic  relations for the components  of the solid phase are  as follows: 

Pa = PaO (1 - fla ( d U / 3  - a0) - loa (T, - Ts0)) ; 

$ 

Ps = Ps0 (1 - f l s  (crkk/3 -- a0) - lOs (T  s - Ts0)) ; 

(4) 
$ $ 

PsdEs = PsCsdTs + tr'ildeiy + losTsda'kk/3 ; 

= - Okk/(3Pa ) dPa + lOarsdtYkk/3, p a d E  a p a C a d T  s s s 

where the actual stresses in the solid phase are determined by the relationship 

$ 

cri/ = c r i ] / ( l  --  (1 - a )  m) + P i j "  ( 5 )  

We introduce the following dimensionless variables and parameters:  

t t t f 

x = x / x  O, t ' =  t / t  O , u = u / x  O, p = p / p o ,  P ' = P / K O ,  tr = a / K o ,  

t f t = = g '  
T' T/Oo , fl = flKo , lo 7,00, = K / K o  , G' = G / K o  , v = v / v  O, 

' ' ' 2 2  
e = E l y , ,  ,, = v l ( K o t o ) ,  = ; Ootol(,,oVoPo), C' = COolv , 

' 2 , 2 ' 
R = R O o / v  , Z - - •Ooto/(VoPo) ,  k ' = k x  o ,  co =cot  O, 

where x0 = v0to; to = por / vg ;  vo = (Ko/Po)  1/2. 

Dropping primes, we write the system of equations of mass, momentum,  and energy conservat ion in 

dimensionless form (i, j = 1, 2, 3): 

0 ( ( 1  - -  a )  m p g ) / O t  + V x ((1 - a)  m p g V g )  ---- 0 ; 

0 (amp,~ + (1 - m ) p s ) / O t  + V x ( (ampa  + (1 - m)ps) is) = O; 

(1 - a )  mpg [O/at + (vg, Vx)] vg i - (1 - a ) m O P i J O x  j + m 2 (1 - a )  2 (vg i - vsi ) = 0 ; 

(ampa + (l  - m)Ps) [O/Ot + (Vs, Vx)] vsi - Oc~/Oxy - 
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- (1 - (1 - a )  m)  OPil/Ox i - m 2 (1 - a )  2 (vg i - vsi ) -- 0 ; 

m (1 - a ) p g  [O/Ot + (vg, Vx)l Eg = m (1 - a)Pis~gvgi/Oxi + 

+ m 2 (  1 a)  2 1% vs[ 2 - - - Z ( q  -- Ts) + Vxm (1 - a )  ~.gVxTg ; 

(1 - m ) p  s [O/Ot + (v s, V x ) ] E  s + amPa [O/Ot + (v s, V x ) ] E  a = [Oil + 

+ (1 - (1 - a)  m) Pi/l  o v ~ / o x / + z  (Tg - r O + V x ((1 - m),l~ + ama,~) VxT~; 

(6) 

Oui/Ot -- vsi = 0 ; eq -- [Oui/Ox i + Ouj/Ox i ] / 2  = 0 .  

Relations (1)-(6) constitute a closed system of equations with respect to unknown tensor  functions trij and 

eli, vector functions u, vs, and v v and scalar functions m, p, Ts, and  T s. It contains a number  of dimensionless 

parameters:  k, G, fls, fla, it's, Ioa, etc. Substitution of rheological and thermodynamic  relationships into the system 

o f  conservation laws leads to inverse Reynolds and Peclet numbers  Re~ 1 and Pe~ l at the second spatial derivatives 

in the equations of momentum and energy conservation, respectively. It is evident that 

Re a = VoXoPo/V o - K O P O K / V  2 ' Pe a = VoXoPoCo/Jlo - K o P o C o r / ( V ~ o ) .  

Estimates of values of the dimensionless parameters  can be obtained with the use of characterist ic values 

of c o n s t a n t s  o f  r o c k s  a n d  p o r e  f l u i d s  [ 5 1 : K 0  - 1 0 8 - 1 0 9  P a ,  0 0 - 1 0 2 - 1 0 3  K, p o - 1 0 1 - 1 0 3  k g / m  3, 

f l - 1 0 - 1 ~  -9  Pa  -1,  i o - 1 0 - 6 - 1 0  -3  K - l ,  ( 2 0 - 1 0 3  J / ( k g . K ) ,  ~ l o - 1 0 - a - 1 0  ~ W / ( m . K )  , v 0 - 1 0 - 5 - 1 0  -4  

Pa .sec ,  and ~ -  1 0 - 1 5 - 1 0  -7 m 2. With these values of parameters we have: t o -  1 0 - 9 - 1 0  -6  sec, v o -  103-103 

m/see ,  xo - 10 - 6 - 1 0  -3 m, which determines the ranges of variation of Rea - I00 -106  and Pea - 101-106.  Thus,  

in the actual range of parameters  of gas-saturated rocks, the effect of dispersion factors (viscous stresses and 

thermal  diffusivity) can be both small (in a high-permeabil i ty medium saturated with a low-viscosity gas) and 

considerable (in a low-permeability medium saturated with a high-viscosity gas). 

It should be noted that the chosen method of introduction of dimensionless variables determines  the velocity 

scale vo as the characteristic velocity of propagation of elastic perturbations and the time scale to as the characteristic 

relaxation time of the interphase momentum exchange (interphase viscous friction) and makes it possible to find 

the corresponding characteristic spatial scale xo. Th e  obtained quantitative estimates of to and xo restrict  the region 

of applicability of estimates of Rea and Pea to the range of high-frequency (short) waves. 

Evolution of  Small Free  Oscillations. In order  to investigate regularities of wave propagation in a saturated 

porous medium, we restrict ourselves in what follows to the Cauchy problem with the initial conditions (i, j = 1, 2, 

3) 

0 0 0 
uil t= o = u O, vsilt= 0 = Vsi, vgilt= o = Vgi, m l t = o  = m , 

o o o 
P l t = o = P  , Tglt=o = Tg,  Tsl t= 0 =  T s ; 

o o o 
ei]lt=O -- ei]= [OUi/OX j + Ou.i /Oxi]/2 ; 

0 = 2O (e 0 - (1 /3 )  e~ + f lsKP%ij a/j It= 0 = cri/ KeOk3i] + 

o o o o 
~OsKTs6ij + amOva [OVsi/Ox j + OVsj/Ox i (2 /3 )  6ij] .  (7) _ _ ( o v s ~ / O x ~ )  

We will seek a linear solution of the problem (1)-(7) in the form of a superposition of a slow background 

motion and its small fast-oscillating perturbation 
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v = Uph (x,  t) + eyn  exp  (iSlE). (8) 

Here �9 is a small  parameter,  U - (m, vgi, vsi, p, Tg, Is, ui, oi/, eq) is the vector function of  sought  quantit ies,  and 

the phase  S / e  = <k / j>  - car, where  r = t / e  and ~i = xi /e  are fast variables. 

For simplicity,  we  choose  as a background solution a h o m o g e n e o u s  stationary state Uo whose  ex i s tence  is 

determined by the condit ions  of zero  velocities of  phase mot ion  (v~ o =, vsi o .= 0) ,  identity of  temperatures  (Ts0 - 

T s o "  TO), and independence  of the constants  m O, P0, TO, and u/0 on x. 

The system of equations (I)-(6) linearized on the background Uo can be presented in operator form 

A. U = 0 ,  (9) 

where 

A (OlOt, OlOx i, 021OxiOx], UO) = A 1 (OlOt, OlOxi, UO) + 

+ -42 02/oxpx/, uo)  + ,43 (tto) �9 

Let Ul be determined by the amplitude of the original perturbation, i.e., by the oscillating portion of the 
initial conditions U 0 m (toO, yogi, vosi, pO, T~g, 7~s , u O, a 0, e~ the components of the wave-vector are positive numbers, 

and frequencies m can be complex. This approximation corresponds to the Cauchy problem of the evolution of 

k-waves, which is an analog of free oscillations [11 ]. In this case the imaginary part of the frequency oJ determines 

the decay coefficient of the wave. 

Substitution of the solution in the form (8) into linear system (9) leads to the condition of nontrivial 
solvability - to a dispersion equation relating w and k. When analyzing mechanisms of wave propagation in 

saturated porous media, it is of interest to investigate dependences of phase velocities V(k) = Re(w/ Ik l  ) and decay 
coefficients ~ (k) ffi Im(w) for various types of waves on various scales of the Reynolds and Peeler numbers and the 

related small parameter e. In what follows, we present results obtained under the assumption that the Froude 

number Fr -= 1 for three cases. It should be noted that derivation of dependences of wave characteristics on I kl 

appears to be possible as a result of consideration of the isotropic stressed-deformed background state. In the case 
of anisotropy, an analysis depending on the direction of the wave-vector is required. 

Analysis of Dispersion Relations. Case 1: e 2 ffi Rea 1 ffi Pea I - 1 0  -6. It is easily seen that substitution of 

(8) into (9) yields 

tA 1 (O/fir, O/O~i, UO) IeA  2 (O2/OtiO~], UO) + eA 3 (Uo) l" Vl = O. 

Therefore, with the accuracy of O(e) we have 

a 1 (O/fir, 0/0~ i, U0)-U 1 = 0 .  

The corresponding dispersion relation is obtained in the form 

Jl  = Det A 1 ( -  ko, iki, Uo) = O. (10) 

Here (and in what follows) we do not present the dispersion equation in explicit form, since it is extremely 

cumbersome. Application of means of computer algebra makes it possible to present (10) as 

"1 = 17 617 , 

where the roots of the fourth-degree polynomial ,~P4 determine the frequencies of the direct and reverse longitudinal 

waves of the first (pressure waves) and second kind (repacking waves), and the roots of polynomial ,y,2 determine 
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the multiple frequencies of transverse waves with different polarizations. The  following investigation is restr icted 

to a numerical analysis with graphical presentation of the results. 

In the case under  consideration,  the system of equations of the model is hyperbolic,  and dissipative and  

dispersion effects are not included in the linear analysis. This leads to the absence of decay (Im(a~) = 0) and  

observation of constant values of velocities of all types of waves for all values of k. It should be noted that the l inear 

analysis is the first stage of application of the method of multiscale decompositions for construction of an asymptotic  

solution with higher  accuracy [8-10 ]. Thus ,  construction of a solution with the accuracy of O(e 2) leads to a Burgers- 

type non l inea r  equat ion,  and  the next  step of the decomposi t ion  (with the accuracy  of O(ea))  leads  to a 

C o r t e v e g a - d e  Vr i e s -Burge r s - type  equation. These  nonlinear evolution equations a l ready take into account effects 

of weak dissipation and dispersion and make it possible to analyze decay regimes for waves and  their  resonance 

interaction. 

Case 2. �9 = Rea  I - Pea  I - 10 -3.  It is easily seen that substi tut ion of (8) into (9) yields 

[A 1 (O/Or, OIO~ i, UO) + a 2 (o21a~iO~i, Uo) + ea 3 (Uo) ]. V 1 = O, 

[A 1 (0/Or, OlO~i , Uo) + A 2 (0210~iO~], lJo) i" V 1 -~ O. 

The  corresponding dispersion equation leads to 

J2 = Det [A l ( -  iw, iki, Uo) + A 2 (i2kikp U0) I = 0 .  (11) 

As is evident from (11), the characteristic equation in the case under  consideration accounts for  dispersion 

factors and does not take into account dissipation due to interphase friction. The  system of equations of the model 

is not hyperbolic any more,  which is expressed, in particular, in the fact that the frequencies of all selected wave 

types are complex-valued. Here,  estimation of the dependence of phase velocities of waves V (velocity dispersion) 

and decay coefficients 6 on the wavelength in a linear approximation is of definite interest.  An asymptot ic  analysis 

of this case in a nonl inear  formulation implies application of the modified multiscale decomposit ion method [12 ] 

for the case of "strong" dispersion, which falls outside the scope of the present work. 

Case 3: e = Rea  I = Pea  I - 1. In this case all the factors (inertial, dissipative, and dispersion) appear  to be 

of the same order ,  and the system of equations of the model contains no small parameter  determining the scale of 

fast variables (z m t, ~i -- Xi). TO analyze the evolution of small perturbations of the background solution we assume 

additionally that  Ul << Ub. Then  substitution of (8) into (9) yields 

[A 1 (0 /0 r ,  O/O~i, UO) + A 2 (O2/O~iO~i, UO) + A 3 (Uo) ]" U 1 = O. 

The  corresponding dispersion relation has the form 

J3 = Oet [A l ( -  ion, iki, Uo) + A 2 (i2kik/, UO) + A 3 (Uo) ] = O. (12) 

In the case under  consideration, estimation of the joint effect of dissipative and dispersion mechanisms 

appears to be possible. 

Examples of Calculations. Figures 1-3 present results of calculations of phase velocities Vi and decay 

coefficients 6i for longitudinal waves of the first (i = 1) and second (i -- 2) kind and transverse waves (i = 3) based 

on numerical evaluation of roots of dispersion equations (10)-(12).  The  numbers of the curves presented correspond 

to the above-considered cases. The  calculations were carried out for the following values of the dimensionless 

parameters: vg -- 0.1, va -- 1, P~o -- 1, Pso = 2.5, ~o a = 0.5,/5 a -- 0.5, ~o s --- 0.1,/5 s -- 0.1, G -- 0.8, K = 1, Ca -- 2, Cg = 

1, Cs = 1.2, ~g = 0.001, ,~a = 1, k s = 2, X = 0.1, a - 0.1, m 0 = 0.2, T O -- I, and e O = 0. The  solid curves (I ,  2, and 

3) were obtained for po = 0.1, and the dashed curves (1', 2', and 3') correspond to po = 0.01. 

First, let us consider longitudinal waves of the first kind (Fig. la) .  Case 1 (curves 1 and 1') is character ized 

by a wavelength-independent  phase velocity and the absence of decay (this also holds for all types of waves of Case 

360 



v, 

L6 

1.4 

1.2 

LO 

,,( ,/ 
~'x x .:l ' 

- " - " : ~ "  ~ ; - "  . . . .  "% . . . . . .  I "  . . . .  "= . . . . . .  

0.5 

0.4 

o.J 
~2 

0.! 

0 

\ ',\ 

/ 

t 

a 
i 

! 

0.! 

O.O5 

0 

-a05 

-O.f 

x \ \  

0 0.2 0.4 0.6 0.8 Ik  

"af 

-0.2 ~ 

-0.3[ ~ \ 

-o.4 ~\ 2' 

_o.5 b \ 
I I 

0 0.2 0.4 

1, f 

~6 0.8 Ikl 

Fig. 1. Plots of phase velocity Vl (a) and decay coefficient 61 (b) versus 

wavelength for longitudinal waves of the first kind. 

Fig. 2. Plots of phase velocity II2 (a) and decay coefficient 62 (b) versus 

wavelength for longitudinal waves of the second kind. 

1). Curves 2 and 2' (Fig. la) are indicative of a tendency to a certain decrease in the velocity of the wave with 

decreasing wavelength. As is evident from curves 3 and 3' (Fig. la),  the joint effect of dispersion and dissipative 

factors leads to an sharp increase in the velocity in the longwave region. Comparison of curves 2 (2') and 3 (3') in 

Fig. la shows that a decrease in the pore gas pressure leads to an appreciable decrease in the phase velocity. The 
dependence of the decay coefficients in Case 2 (curves 2 and 2' in Fig. lb) is nonlinear, and they depend 

substantially on the value of the background gas pressure. It should be noted that a qualitative difference takes 

place between the dependences of the decay coefficients: the tendency towards a growth in the absolute value of 

the decay coefficient with decreasing wavelength gives way to a tendency to its decrease. Case 3 is distinguished 

by the manifestation of an instability effect, when the decay coefficient becomes positive, and its value increases 
with the wavelength. A decrease in the pore pressure leads to an expansion of the region of wavelengths where the 

instability takes place. As a whole, an increase in the pore pressure leads to stabilization of longitudinal waves of 

the first kind. 

The effect of the pore pressure level p0 manifests itself distinctly by the example of longitudinal waves of 

the second kind, which are distinguished, as is known, by opposed motion of the solid and fluid phases. As is 

evident from Fig. 2a, in Case 2, a tendency is observed towards a sharp decrease in the phase velocity (curve 2', 

Fig. 2a) with decreasing pore gas pressure, and an increase in the absolute value of the decay coefficient (Fig. 2b) 

with decreasing wavelength to the extent that an "opacity" region appears when V2 = 0. At the same pore gas 
pressure in Case 3 the medium appears to be nontransparent at an arbitrary I kl (the missing curve 3' in Fig. 2a 

corresponds to 1"2 -- 0). With increasing p0, the medium becomes "transparent" for short waves, and a tendency 

towards an increase in the phase velocity with decreasing wavelength takes place (curve 3 in Fig. 2a), and an 

extremum in the decay coefficient is observed (curve 3 in Fig. 2b). 

Transverse waves (Fig. 3) are characterized by a virtually constant phase velocity and are independent of 

the value of the pore pressure (curves 1, 1', 2, and 2' in Fig. 3a) except for Case 3, when an increase in the velocity 

is observed with decreasing wavelength. As is evident from a comparison of curves 1 (1'), 2 (2', and 3 (3') in Fig. 
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Fig. 3. Plots of dependences of phase velocity V 3 (a) and decay coefficient 63 
(b) versus wavelength for transverse waves. 

3b, decay of the transverse waves increases in the usual manner with an increasing influence of dissipative and 
dispersion factors. 

In conclusion, we emphasize that the linear analysis carried out in the article is not exhaustive, since it is 

restricted to taking into account only a few parameters. However,  it makes it possible to estimate to a first 
approximation the effect of dispersion and dissipative factors within a wide range of acoustic Reynolds and Peclet 
numbers and distinguish a number of physical phenomena. In addition, this analysis is a necessary first step 

towards construction of asymptotic solutions and physical substantiation of the choice of methods for numerical 
investigation of the model of wave propagation in a gas-saturated porous medium. 

N O T A T I O N  

x, spatial coordinate; t, time, m, porosity, x, permeability; a,  volume fraction of bound liquid; p, density; 
Pq, tensor of stresses in the gas phase; ~j,  tensor of actual stresses in the solid phase; aq, tensor of effective 

stresses; v, velocity vector; p, pressure; T, temperature; u, displacement vector; eij, deformation tensor; K, effective 
modulus of bulk elasticity; G, shear modulus; fl, compressibility factor; ~o, thermal expansion factor; E, internal 
energy; v, viscosity; 2, thermal diffusivity; C, specific heat; R, gas constant; X, coefficient of interphase heat 
transfer; k, wave-vector; co, frequency; Rea, acoustic Reynolds number; Pea, acoustic Peclet number; V, phase 

velocity; 6, decay coefficient. Subscripts and superscripts: s, solid phase; g, gas; a, bound liquid. 
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